%0期刊文章%@ 2369-2960 %I JMIR出版物%V 7% 卡塔尔世界杯8强波胆分析N 1% P e22717 %T饮食、营养、肥胖及其对COVID-19死亡率的影响:半连续数据边缘两部分模型的开发a Kamyari,Naser % a Soltanian,Ali Reza % a Mahjub,Hossein % a Moghimbeigi,Abbas %+哈马丹医学科学大学非传染性疾病研究中心,Daneshgah-e-Bu Ali Sina,哈马丹,伊朗,98 81 38380025,soltanian@umsha.ac.ir %K COVID-19 %K饮食%K营养%K肥胖%K边缘两部分模型%K半连续数据%D 2021 %7 26.1.2021 %9原始论文%J JMIR公共卫生监测%G英文%X背景:营养不是COVID-19的治疗方法,但它是慢性疾病发展的可改变因素,与COVID-19严重疾病和死亡高度相关。均衡的饮食和健康的饮食模式可以增强免疫系统,改善免疫代谢,降低患慢性疾病和传染病的风险。目的:本研究旨在通过使用新的统计边缘两部分模型,评估188个国家的饮食、营养、肥胖及其对COVID-19死亡率的影响。方法:我们在考虑世界卫生组织不同区域之间的差异的同时,评估了国家层面的饮食和营养分布。通过估计系数和绘制彩色地图,报告了全球范围内食品供应类别和肥胖对死亡人数和康复人数的影响(及其关联)。结果:研究结果表明,每增加1%的豆类补充剂,零死亡的几率就会降低4倍(OR 4.12, 95% CI 11.97-1.42)。此外,动物产品和肉类补充量每增加1%,零死亡的几率分别增加1.076倍(OR 1.076, 95% CI 1.01-1.15)和1.13倍(OR 1.13, 95% CI 1.0-1.28)。坚果降低了零死亡的几率,而蔬菜则增加了死亡人数。 Globally, the results also showed that populations (countries) who consume more eggs, cereals excluding beer, spices, and stimulants had the greatest impact on the recovery of patients with COVID-19. In addition, populations that consume more meat, vegetal products, sugar and sweeteners, sugar crops, animal fats, and animal products were associated with more death and less recoveries in patients. The effect of consuming sugar products on mortality was considerable, and obesity has affected increased death rates and reduced recovery rates. Conclusions: Although there are differences in dietary patterns, overall, unbalanced diets are a health threat across the world and not only affect death rates but also the quality of life. To achieve the best results in preventing nutrition-related pandemic diseases, strategies and policies should fully recognize the essential role of both diet and obesity in determining good nutrition and optimal health. Policies and programs must address the need for change at the individual level and make modifications in society and the environment to make healthier choices accessible and preferable. %M 33439850 %R 10.2196/22717 %U http://publichealth.www.mybigtv.com/2021/1/e22717/ %U https://doi.org/10.2196/22717 %U http://www.ncbi.nlm.nih.gov/pubmed/33439850
Baidu
map